3D Scanning and Emergency Management of Cultural Heritage Buildings after Earthquakes: the St. Francis of Assisi Integrated System

3D scanning of the three levels of the St. Francis of Assisi Basilica (Assisi, Italy) -courtesy of Prof.  Fabio Garzia – La Sapienza University, Rome (Italy).

One of the main problems of emergency management in case of damage reported by historic buildings after an earthquake is represented by immediate damage assessment. In fact, nowadays it is not possible to use techniques other than the personal evaluation carried out by first responders.

The purpose of the paper, presented by Dr. Eng. Stefano Marsella and Prof. Fabio Garzia at the 6th International Conference on Heritage and Sustainable Development – Granada June, 2018  is to illustrate a proper 3D imaging technique to improve damage restorations, showing, as a case study, what has been done and what is going on in the Papal Basilica and the Sacred Convent of Saint Francis in Assisi, Italy.

One of the main problems of emergency management in case of damage reported by historic buildings after an earthquake is represented by immediate damage assessment. Nowadays, it is not in fact possible to use techniques other than the personal evaluation carried out by rescuers. However, since in many cases it is necessary to estimate the deformations and displacements of structures based on objective values within a brief time, the Department of Fire Corps of the Italian Ministry of the Interior and the research sector have started to study alternative solutions, using innovation technologies. One of the methods under study is represented by the use of 3D images of the buildings acquired before the events and their comparison with similar images acquired after the events.

Download the paper: Marsella_Garzia1

The oldest fire detection system ever? The case of St. Paul outside the Wall Basilica in Rome

St. Paul outside the Walls fire – Rome July 15th, 1823
(from: Archivio di San Paolo)

In the night of July 15th, 1823, a fire destroyed a large part of the Papal Basilica of St. Paul outside the Walls in Rome. In the following years reconstruction works, particularly interesting  for the historical evolution of fire safety measures, began. In particular, the fire protection system adopted seems to be the first case of automatic detection and alarm system ever designed in the world.

The conference “Salvare la Storia” (Saving Hystory), held in Rome on 21st November 2017 and organised by the Italian Fire Services (Corpo Nazionale dei Vigili del Fuoco), has disclosed this aspect, which is related to one of the worst fires that have damaged a building of historical, cultural and religous significance in Italy in the last two centuries.

The events that led to the fire have been studied widely. For a number of reasons, it isn’t known with certainty the cause of the fire, but the strong interest of the Popes (Leo XII, Gregory XVI and finally Pius IX)  in restoring the Papal Basilica and providing it with the most efficient protection against the fires is well documented in the State Archive of Rome (Archivio di Stato di Roma) and the Gregorian Archives (Archivio Storico – Pontificia Università Gregoriana). The period when the fire occurred was restless. Attacks on major buildings had already occurred and many feared that the Basilica fire was not accidental but for a deliberate act.

After a  risk assessment that considered the particular position of the monument (an abandoned countryside area some kilometers away from the city) and the high risk of arson due to political reasons, Pope Gregory XVI (meanwhile, Leo XII had died) asked to a particularly skilled engineer and architect, Luigi Poletti, to provide the new roof and the entire monument with a fire protection system. Luigi Poletti, asked the scientist Fr. Angelo Secchi (an Italian astronomer, director of the Observatory at the Pontifical Gregorian University) to study a new system.  Fr. Secchi, with the contribution of the Luswerghs (a family of engineers that in Rome had been crafting scientific apparatus for decades) planned the whole protection system of the Basilica with a comprehensive view of the problem.

Water reservoirs, pumps, lightning protection, thermometers, an apparecchio termoelettrico avvisatore d’incendi (thermoelectric fire warning device) feeded by two electric batteries “Leclanchè system” were designed and realised, together with a telegraphic system that connected the Basilica with a kind of control room in the center of Rome (the area of the Basilica was some kilometers away from the periphery of the city, in an abandoned area subject during summer to malaria).

St. Paul outside the Walls Basilica – hypothetical position of the 1867 project of the fire safety system pumps and reservoirs

No parts of the original fire protection system survived the beginning of the XIX century, since the new administration (Rome in the meantime had been conquered by the Savoyards troops) considered the system useless. Details of the features of the system should be published in the first months of 2018, when the conference proceedings will be published by the Italian National Fire Service.

Program of the conference, organised by the Director of the National Fire Academy Dr. Eng. Stefano Marsella for the EU funded STORM project

The presentation (in Italian) of the historical context of the reconstruction of Basilica, by Dr. Monica Calzolari (Archivio di Stato di Roma), can be downloaded here:

In the proceedings of the 3rd International Conference on the History of Engineering, held in Naples (http://www.aising.eu/wp-content/uploads/2018/05/Atti_VII_Convegno_2018.pdf) on 23rd and 24th April, 2018, a paper concerning the fire protection of the Basilica has been published. The poster of the paper can be downloaded here: AISING Conference poster.

 

Preparedness and First Aid to Cultural Heritage in the STORM Summer School

Istituto Superiore Antincendi (National Fire Academy of the Italian Firefighters)

Protecting Cultural Heritage form disasters needs different actions, one of the more important of which is to make aware stakeholders about what to do, during emergencies, to limit damages. This consideration has been made by the the EU research project STORM, financed under the Horizon 2020 program, that, from 11th to 13th September 2017  has organized in Rome (Italy) its first course on Management in Emergency of Cultural Heritage. The course “STORM Summer School 2017” has been based on the main topic of the project: how to protect (from preparedness to recovery) cultural heritage against damages due to climate change. So, together with the lessons and the field demonstrations concerning first aid to heritage and historical building, climate change and its effects on the environment have been briefly described.

The Course, a preparatory activity to organise the 2018 STORM Summer School, has been held in Rome, in the National Fire Academy (Istituto Superiore Antincendi) with a 2 and an half days program and final examination. The aim of the course, is giving to managers and to anyone is committed in managing Cultural Heritage buildings some basic information on the main risks due to climate change that can pose a threat to Cultural Heritage buildings and artefacts. The program is based on the underlying consideration that the  training and cultural basis in Europe of people charged of managing such assets is extremely different in the member states.

The speakers and the topics of the course have been:

  • Dr. Ivonne Anders, University of Stuttgart (GE), Climate change observed and predicted in Europe 
  • Dr. Alcides Fuschini Bizarro, Município de Grândola (PT), Water and environment agents  damages: protecting procedures  in emergency 
  • Prof. Joerg Birkmann, University of Stuttgart (GE), Climate change and new threats to cultural heritage
  • Dr. Eng. Silvia Boi, Engineering Ingegneria Informatica (IT),  The STORM project and protection of cultural heritage: state of the art and goals
  • Dr. Francesca Boldrighini, Soprintendenza Speciale per il Colosseo, il Museo Nazionale Romano e l’Area Archeologica di Roma (IT), Gathering and sharing data in emergency between rescue services and cultural heritage protection bodies
  • Dr. Maria Concetta Capua, Nova Conservacao (PT), STORM suggested forms and their use on field
  • Prof. Patrikakis Charalampos, Technological Educational Institute of Piraeus (GR), Description of sensors used in STORM
  • Dr. Eng. Armando de Rosa, Corpo Nazionale dei Vigili del Fuoco (IT), Quick assessment of damaged structures
  • Dr. Paolo Dolci, Corpo Nazionale dei Vigili del Fuoco (IT), Steading of a earthquake-damaged masonry arch
  • Dr. Arch. Maria Teresa Jaquinta (ICCROM), Definition, classification and protection of cultural heritage rules
  • Dr. Eng. Andrea Marino, Corpo Nazionale dei Vigili del Fuoco (IT), Earthquake damages: shoring procedures in emergency scenarios
  • Dr. Eng. Stefano Marsella, Corpo Nazionale dei Vigili del Fuoco (IT), Protection of cultural buildings and sites from vegetation fires
  • Dr. Eng. Marcello Marzoli, Corpo Nazionale dei Vigili del Fuoco (IT), Gathering and sharing data in emergency between rescue services and cultural heritage protection bodies
  • Dr. Eng. Luca Nassi, Corpo Nazionale dei Vigili del Fuoco (IT), Protection of cultural heritage and artifacts from structural fires
  • Dr. Filipa Mascarenhas Neto, Direção-Geral do Património Cultural (PT)
  • Mr. Fabio Perossini, KPeople (UK), Roles and Responsibility in cultural heritage resilience, How to estimate costs to be faced. Voluntarism involvement. A strategy for the future
  • Dr. Mohammed Ravankhah, University of Stuttgart (GE), Climate change observed and predicted in Europe
  • Dr. Vanni Resta, KPeople (UK),
  • Dr. Maria Joao Reves, Nova Conservacao (PT),  Integration of short and long term applications to enable improved decision making and faster reaction
  • Prof. Ulderico Santamaria, Università della Tuscia (IT), Protection measures on cultural heritage against environmental agents
  • Prof. Eren Uckan, Bogazici University and Kandilli Observatory (TR), Principles to face earthquake risks for cultural heritage
Summer School Field demonstration of salvage of flooded books

Five “Field Exercise” have been kept:

  • Before the disaster: Data collection –  How to collect data about the Cultural Heritage in the preparedness phase;
  • First Aid to books in case of flood – Instructions to first responders to save books and papers involved in floods;
  • Steading of a earthquake-damaged masonry arch – Demonstration about the shoring of a masonry structure in the aftermath of the event (earthquake) applying operating procedure of the Italian National Firefighter Corps;
  • First aid to damaged fresco – Procedures to save frescoes damaged applying the  technique of detaching from the walls;
  • Quick assessment of damaged structures – Demonstration of the procedures currently developed by the Italian National Firefighters (CNVVF) within the STORM project in the Terme di Diocleziano pilot site aimed at helping the quick assessment of the structural damage of a building using Geo-Radar and Laser Scanner equipment.
STORM 2017 Summer School Program

Two demonstrations have been dealing with scenarios concerning the assessment and the limitation of damages to Cultural Heritage after earthquakes or floods. The Italian Firefighters (CNVVF) showed, in particular, the techniques used in the immediate aftermath of an earthquakes to shore damaged historical buildings have been demonstrated with the construction, in few hours, of a shoring wooden structure aimed ad reinforcing a damaged masonry arch.

In the second scenario the quick assessment of a damaged building (even in this case, damage is not related necessarily to an earthquake) has been carried out using laser scanner and geo-radar technologies. This particular activity is an innovation action due to the European project and is currently developed in the pilot site of the Terme di Diocleziano compound, in Rome. The concept of the action is verify the feasibility of a procedure based on the comparison between a scanning of a damaged structure carried out by the firefighters after the damaged with a 3D image previously acquired by the owner/manager of the structure and available to firefighters even in emergency. Such possibility would allow to assess with extreme precision the displacement of the structure and decide with more confidence what kind of measures have to be taken. Other demonstrations have dealt with limitation of damages activities to frescoes and with salvage of flooded books.

The 2017 edition of the Summer School aimed at giving the basic information about the first year results of the STORM project. The second edition of the course will be organized during 2018. The course has been an experimental edition, limited to partners of the project and invited stakeholders. The purpose of the course has been the verification of the user requirements, in order to organize the 2018 edition within a framework closer to the stakeholders.

Summer school program

Flyer Summer School

 

Forest Fire Risks to Cultural Heritage

When it comes to assess the risks of fire to Cultural Resources buildings or artefacts, normally they are related to buildings.  In a consistently smaller number of cases, the scenario is related to a forest or a vegetation fire.

The technical literature concerned with the protection of cultural heritage from the risks of fire rarely takes this issue into account. One of the few documents that fully addresses this aspect is the Wildland Fire report in Ecosystems Effects of Fire on Cultural Resources and Archeology, published by the United States Department of Agricolture.
In order to deal with the risk induced by vegetation fires, the report divides the types of fire into three main categories:

  • Risk to artefacts caused by vegetation fires;
  • Risk to intangible Cultural Resources caused by vegetation fires;
  • Risk to Cultural Resources caused by fire suppression and rehabilitation activities.

A quick overview of the overall problem (broadly based on the USDA document) of the risks to Cultural Heritage associated with vegetation fires has been the object of a presentation during the 2017 STORM Summer School, held on September 11-13 in Rome.
STORM is an EU Horizon 2020 project financed to enhance the capacity of stakeholders to protect cultural heritage against climate change effects and the course – Emergency Management of Cultural Heritage – has dealt with several issues of protection of Cultural Heritage.

Water Mist and Cultural Heritage: can Simulation Tools help assessing its effect?

The_Blue_Boat_1892_Winslow_Homer – Museum of Fine Arts – Boston 

Watercolor images are among the most vulnerable artefacts to the effects of firefighting water  systems.

According to the NFPA 750 definition, watermist is a water spray for which the 99% of the total volume of liquid (Dv0.99) is distributed in droplets with a diameter smaller than 1000 microns at the minimum design operating pressure of the water mist nozzle.A slightly different definition has been introduced by the CEN/TS 14972,  as a water spray for which the 90% of the total volume of liquid (Dv0.90) is distributed in droplets with a diameter smaller than 1000 microns at the minimum design operating pressure of the water mist nozzle.

Given the importance of water mist systems in firefighting protection, when such resource is considered as a possible choice in the fire protection strategies, the first step to be taken before adopting them is assessing their effects on the objects to be protected. Among them, there’s a lot of objects that do not like water, even if distributed in very small droplets.

Thus, the capacity of simulating a fire and fire extinction process is critical to choosing with the required data. The study “Can we predict fire extinction by water mist with FDS?”, By A. Jenft, P. Boulet, A. Collin, G. Pianet, A. Breton and A. Muller has been recently published on Mechanics & Industry (14 , 389-393 (2013)) and deals with the general problem of simulating the suppression of a fire with water mist systems. Even if it is not focused on cultural heritage protection, the paper gives some important information about the actual possibilities of the existing simulation capacities.

The abstract of the paper starts from the consideration that, among the primary phenomena observed when studying fire suppression, there are fuel surface cooling, fire plume cooling and inerting effects. In particular, the final result of water evaporation generates significant vapor concentration, thus leading to an important heat sink as well as displacement and dilution of both oxygen and fuel vapor.

The simulation tool from NIST Fire Dynamics Simulator (FDS.v6) is expected to be able to reproduce the effects of the fuel vapor. The extinguishing criterion for focusing on plume cooling and inerting effects is based on a dedicated heat balance, while the suppression model for fuel surface cooling evaluates the burning rate decrease according to an exponential law taking into account local water mass reaching the fuel surface per unit area and an empirical constant which penalizes the prediction ability. Therefore, a new model derived from an Arrhenius equation has been implemented from the Authors. Such model links the burning rate to the fuel surface temperature. Numerical simulations have been conducted and the paper illustrates the comparison with experimental data for all extinguishing mechanisms.

Why the simulation capacity of the fire spread is so important? Actually, if a fire is well modeled and is possible to reproduce the effects of the water mist suppression effects, is possible to plan a distribution of the nozzles that is compatible with the fire suppression needs and with the preservation of the artifacts vulnerable to the droplets.
Obviously, fire technologies should allow another assessment, which is as important as the simulation of the water mist operation: how and how much the smoke and dangerous gases affect the objects to be preserved. Unfortunately, in this case the problem is not in the availability of the simulation tools (we can assess in a acceptable way the quantity and the quality of gases and smoke produced by a smoke) but in the lack of data concerning the effects of fire effluents on historical objects.

The definition of an acceptable thresholds (for example, which concentration of HCN is acceptable when a XIII century oil on wood painting is exposed for 20 minutes) is still not easy for any specialist since few researches have been carried out on this specific area.

Fire risks and new threats from climate change to libraries and archives

Key observed and projected climate change and impacts for the main regions in Europe from: Climate change, impacts and vulnerability in Europe. Source: EEA Report 2012

According to the document published in 2012 by the European Environment Agency  (EEA), Europe will experience over the next few decades some effects caused by climate change. The expected changes are not uniform throughout the mainland, but they can be summarised in a number of homogeneous areas. Table 1 illustrates the qualitative trends provided in seven climatic regions.

With regard to fire prevention, in addition to the obvious problem of the increased risk caused by the increase in average temperatures, it may be interesting to analyse which might be the effects of these changes on the measures taken to protect the content of libraries and historical and artistic value archives against the risks derived by the new cheater conditions. Unlike digital archives, in fact, these fire protection features are conditioned by the presence of materials subject to attack from insects and microorganisms. So, the measures taken to limit the damage caused by insects and microorganisms could raise some fire protection issues. To explain the relationship between the risk of proliferation of dangerous insects for the paper, may be useful to start from the identification of the change expected in Europe. Official publications indicate that diversified mechanism depending on the weather areas will affect each region. In particular, in the European continent seven different mechanisms of change can be identified, but one of the most common aspects appears to be the increase of average temperatures and the simultaneous increase of the rainfall. The document of the Piemonte region (Italy) on the state of the environment in 2016 [2] which relates to the impact of climate change on cultural heritage, noted that “The main heritage degradation factors are of a physical nature chemical and biological”:

  • Temperature (T): day / night variations, seasonal. Thermal stress and the freeze / thaw cycles cause damage to the porous building materials (marble, plaster, bricks …);
  • Atmospheric Water: rain precipitation, relative humidity (RH%). Water is the most critical parameter as it acts, either directly or indirectly, in most of the degradation processes both physical and chemical and biological: heavy rains can provoke a mechanical erosion action of the surfaces; the water dissolves and conveys soluble salts within the recrystallizing materials that, as a result of ambient relative humidity variations, cause breakage and damage; high humidity conditions favor the proliferation of biological attacks (mold, bacteria, mosses …);
  • Winds: the particles transported by the winds exert mechanical erosion action on the surfaces, they may also be deposited by creating coatings of surface deposit. The winds convey water and soluble salts (marine aerosols carrying sodium chloride) potentially harmful even in areas protected from the direct action of rain;
  • Biological growths: both the archaeological sites located in rural areas, and the monuments and buildings in urban areas may be colonized by plants, animals and microorganisms such as bacteria, fungi, algae, lichens. The formation of coatings on surfaces in addition to the strong aesthetic impact induces a constitutive biodeterioration of materials which can lead to partial or total loss of the work itself. Of course, the proliferation of biodeteriorigeni is a phenomenon closely related to climate and environmental factors;
  • Atmospheric pollutants: carbon dioxide (CO2), sulfur compounds (SOx), nitrogen oxides (NOx), particulate matter (PM2.5, PM10), ozone (O3) contribute to the degradation of the assets, especially in an urban environment, through different mechanisms of alteration. The pH of rains acid promotes the dissolution of stone materials with carbonate matrix, the sulfur dioxide is the main cause of sulfation processes that lead to the formation of black crusts transforming the calcium carbonate chalk (more soluble and easily washed out by rainwater ) and affecting bronzes (oxidation of the surfaces of the monuments with copper idrossisolfati formation, its characteristic green color); the atmospheric particulate matter is deposited on the surfaces creating unsightly black crusts, coatings and transporting of organic pollutants which are adsorbed and can interact with the constituent materials of the works”.

Given these premises, any design solutions (for archives and libraries) have to be addressed in the light of eco-sustainability, it may be interesting to mention the criteria, that the reference [3] summarises in the following points:

  • A highly insulated envelope
  • Effective solar shading Which uses natural elements such as trees and roof overhangs as well as by shading louvers run by photovoltaic cells.
  • A low rate of natural air infiltration
  • An exposed concrete internal construction, Which Retains the heat,
  • An efficient low-pressure mechanical ventilation system
  • An electrically powered heat pump for heating via the air and thermostically controlled perimeter radiators. During the summer, it cools the building, making Further refrigerating and air conditioning unnecessary.
  • Excess energy can be exported to adjacent buildings
  • The energy is 100% renewable
  • Compact fluorescent lighting, occupancy sensors and sun-shading devices are Also used to improve energy efficiency.

These criteria indicate  the need to eliminate the ventilation openings of the storage rooms of libraries (in order to lower outside air infiltration volumes). Some of fire prevention rules recommend permanent ventilation openings in archives, to limit the damages due to combustion products and make it easier extinguishing operations. So, the need to limit damages due to the insects and microorganisms due to the increase of temperature and ambient humidity, brings to  eliminate the ventilation  permanent openings requested by some fire prevention standards.

Both problems (protection against fire and from attacks of insects and microorganisms) may find an answer in adopting automatic systems. So, the final consideration highligths the criticality of this type of solution, that implies high levels of reliability. Currently, there are no standards dealing with the reliability of the systems governing fire safety of cultural heritage and this lack may be considered a gap to be filled.

[1] Füssel, H.-M., & Jol, A. (2012). Climate change, impacts and vulnerability in Europe 2012. Copenhagen. Retrieved from http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012/at_download/file

[2] Relazione sullo stato dell’ambiente Piemonte 2016. (2016). Retrieved April 17, 2017, from http://relazione.ambiente.piemonte.gov.it/2016/it/clima/impatti/patrimonio-architettonico

[3] Ebunuwele, G. E. (2015). Global Warming : Implication for Library and Information Professionals. International Journal of Humanities and Social Science, 5(6), 69–77.

UAVs and protection of Cultural Heritage sites during emergency situations

 

During the 2016 Central Italy earthquake, drones have been extensively used by the Italian National Fire Service (CNVVF) to protect Cultural Heritage buildings. In particular, their use allowed firefighters to acquire important data about the conditions of the building without exposing themselves to risk of sudden structural collapse due to earthquakes. The image shows a typical night scenario of the earthquake. (image credits: CNVVF)

Being aware of the situation is one of the most important goals that emergency services need when they design the systems and the procedures to be used during or in the aftermath of a disaster. Situation awareness has many different aspects and needs a flow of information (possibly) in real time from a wide variety of data sources. Such data feed the systems that let emergency managers to assess the situation and take their decisions.

In this framework, the research and the end-user’s needs in the field of Cultural Heritage protection are aiming to integrated systems, featuring sensors and state-of-the-art platforms that have to be built in order to offer the needed information about the conditions of artefacts and the damages they’ve suffered for any kind of natural or man-made reason. According such strategy, heterogeneous and distributed data sources should communicate among the main system, generating a flow of data and information through the traditional internet channel. In this framework, sensors infrastructure based on UAV for surveying, diagnosis and monitoring open-space Cultural Heritage sites could be part of a system that would need technologies and innovative approaches to recognise images (collected by UAVs) along with models and techniques of information fusion.

The steel lattice built to protect the remaining parts of the San Benedetto church in Norcia from the collapse. Data needed to design it have been acquired using drones. (image credits: CNVVF)

Exploiting complex event processing techniques and technologies, the extracted information and/or the deducted/determined domain events, would be aggregated and correlated each other in order to bring out potential dangerous or critical situations, ranging from the recognition, validation and localization of signals and events that may suggest the need for monitoring, surveying or warning for disaster prevention, assessing the level of risk (Surveillance & Monitoring Services, Surveying & Diagnosis Services, Quick Damage Assessment Services).

A case study: the 2016 earthquake in Central Italy

In the 2016 earthquake in central Italy an increasing use of drones operated by Italian firefighters (CNVVF) has been recorded, from the early stages of the emergency, in order to have a quick and detailed overview of the magnitude of the damage suffered by major historical and artistic buildings. Such activity has been carried out in the framework of the new procedures adopted to secure buildings damaged in large scale emergency.

In case of earthquake, buildings can pose severe safety problems when damaged. Drones allow acquire data from the inside or in normally not accessible parts without adding risks to firefighters (image credits: CNVVF)

The same tools were used to define the urban areas with the highest number of building collapses. The drones, equipped with  instrumentation for the photographic survey, have allowed the acquisition of a quantity of gigabytes of high-resolution images of the state of post seismic event locations. In particular, the flight of drones helped to identify the state of damage of all the historic buildings and churches of great artistic importance, located in the red area or not allowed area. These data analysis was significant in order to assess the real risk of further collapses and to design effective shoring systems to support unsafe parts still standing.

The aerial photogrammetric data obtained with several daily sorties of drones, are served by specific input software for rapid return and creation of 3D models, or integrated with cadastral data and geomorphological were a valuable support for the knowledge of the actual operating environment where the teams of firefighters intervened for the search and rescue people. In addition, this post processing has enabled, at the end of the rescue of the population, even a more accurate assessment of the damage and consequently a cost estimate as early as the early stages of the emergency.

Obviously, the accuracy of the data obtained (eg. point clouds, surface models and orthophotos) is not comparable with other system such as LIDAR, however, it represents a valid activity rescue tool support allowing to achieve a good evaluation of the severity of the scenario, and then an estimate of the timing necessary for the refurbishment of the primary infrastructure such as roads, electrical networks etc..

In the specific context, the Italian Fire Corps (CNVVF) special units experts in topography during rescue operations (and able to initiate the procedures for mapping), have scoured the areas affected by the quake. The VHF  radio network of the CNVVF (equipped with GPS module and interfaced to specific software on tablet for tracking and geo-referencing), has let them to prepare maps where the information gathered from multiple sources, were processed by experts in GIS systems and transformed it in shapefiles or other formats widely used on platforms such as Google Maps. In this kind of scenarios, the activities needed to assess and restore safety of historic or cultural buildings can be supported by the research as the one carried out in the H2020 STORM project. The task of assessing quickly and in safety condition the damages suffered by historical or cultural buildings has brought to a wide use of UAVs by the CNVVF in the 2016 earthquake. The images recorded by the sensors that have equipped UAVs have been useful to emergency tasks, but their utility would be boosted by the comparison between data detected by LIDAR before and after the disaster event. The STORM pilots scenarios are aiming at integrating UAVs, LIDAR images and procedures shared between cultural heritage managers and CNVVF, in order to let them assess on the scenario and with the best possible resolution the damages a natural event has caused to buildings.

A paper concerning  the use of drones (STORM project and the use of UAV to improve emergency management of  disasters threatening cultural heritage), presented in the UAV&SAR2017 (Rome, 29th March, 2017) Workshop  can be downloaded here: Guerrieri Marsella STORM_UAVSAR_def (1)

LiDAR and Cultural Heritage in emergency situations: the H2020 STORM project first outcomes

The possibility of acquiring images and data of damaged buildings during the first phases of the emergencies is crucial to put them in safe conditions. (Image credits: CNVVF National Fire and Rescue Services  – Italy)

The project STORM (Safeguarding Cultural Heritage through Technical and Organisational Resources Management) has been funded by the Horizon 2020 EU Program and aims at defining a platform that managers of cultural heritage sites can use in improving preparedness, managing emergencies and planning restoration of damaged buildings.

The project specifically considers risks that the cultural sites have to face from either long-term degradation (whose action is far slower than the typical applications of feedback controls), or extreme traumatic events (whose action is much faster). Their common nature is the climate change. So, the specific scope of the project is creating a technological platform that allows a systematic comparison between a real (measured) state and a desired theoretical state.

Assumptions are kept to the minimum possible level and the difference (the measured error signal), is the main input for whatever algorithm may be used to compute the action (input) that needs to be applied to the mitigation process to achieve the desired objective. So, in other words, reliable and up-to-date measures of the key risk variables are the base line for the STORM predictive model but also for the identification of better intervention actions in terms of restoration and conservation of original materials that will be the starting point for a long term mitigation strategies. As a consequence, needs take into account the use of a large number of sensors, in order to acquire the most useful data. For example, in the case of a progressive relative displacement of a structural beam of an ancient monument, over time comparison of periodical LIDAR based detection of the artefact overall 3D model can be used to detect the small differences in the beam’s position over time.

UAVs have been extensively used by the Italian National Fire Service during the 2016 Central Italy Earthquake to survey damages suffered by Cultural Heritage Buildings. (Image credits: CNVVF National Fire and Rescue Services  – Italy)

What is a LiDAR?

According Wikipedia, Lidar (also called LIDAR, LiDAR, and LADAR) is a surveying method that measures distance to a target by illuminating that target with a laser light. The name lidar, sometimes considered an acronym of Light Detection And Ranging (sometimes Light Imaging, Detection, And Ranging), was originally a portmanteau of light and radar. Lidar is popularly used to make high-resolution maps, with applications in geodesy, geomatics, archaeology, geography, geology, geomorphology, seismology, forestry, atmospheric physics, laser guidance, airborne laser swath mapping (ALSM), and laser altimetry. Lidar sometimes is called laser scanning and 3D scanning, with terrestrial, airborne, and mobile applications.

General schema of LiDAR. (Image credits: Wikipedia)

How Cultural Heritage can benefit of LiDAR (according STORM Project)

Based on such information a team of experts (structural engineers, archaeologists, geologists, restorers) will cooperate, in order to understand the causes and find the most adequate response. In this example, the action cannot be predetermined (nor taken automatically of course), but instead requires a careful and accurate cooperative design and planning of the action in order for it to be as effective and as unobtrusive as possible.
When a disaster occurs, general guidelines related to a wide range of events (e.g. flood, earthquake), existing for the specific site, must be dynamically adapted in near real time by ad-hoc team of experts in order to identify the most urgent recovery actions for the specific emergency. So, LIDAR sensors used for structural evaluation and track-changes of the artefact in terms of erosion monitoring as also for geomorphological assessment and mapping of the protected area can offer a valuable support to managers. Moreover, photogrammetric reconstruction by means of historical and contemporary aerial photography to track-changes can support when it comes to assessing the damages through time and forecast potential future threats

LIDAR equipment have been used until now mostly on movable supports, that are steadily placed on the ground to let an accurate record of data. More recently, RPAS devices have been tested as platform to be equipped with regular camera (high resolution RGB still pictures) for monitoring and mapping, Near Infrared camera and thermal and multispectral sensors or the localization and monitoring of buried structures, light-weight LiDAR for higher resolution 3D scanning. Such possibility has demonstrate its extreme importance during emergency situations: in fact, accessing parts of buildings in some cases can be difficult or can pose a severe risk to rescuers. During the rescue operations of the Central Italy earthquake of August 2016, RPAS mounted LIDAR have been used in many scenarios by the Italian National Fire Service and a complete report of such use hasn’t been published yet.

In which scenarios can LIDAR sensors prove to give data not replaceable by other sensors or any operational procedures? One of the first case is any natural or man-made threat that can damage the structures of heritage buildings. Suppose that, after an earthquake, in an ancient masonry buildings fixtures are identified. Even if, in general, it is possible to track the evolution of a fixture in a building, in the larger buildings it is actually impossible to be certain that a damage has been produced by a specific event.

The Italian pilot site of STORM will be tested in the Diocletian Baths complex, in Rome,  a small portion of which is showed in the image. (Image credits: Wikipedia)

It could have been caused previously for any reason (i.e. failure of foundation). The answer that the Italian STORM pilot site of museum of Terme di Diocleziano (Diocletian Baths – Rome) is currently testing is based on a LIDAR scanner of the buildings.

The hypothetical scenario sees a rescue call to firefighters that arrive with their own LIDAR, scan the portion of the building damaged and compare their results with the data previously acquired by the museum managers. As it’s known LiDAR needs time and, mostly, large quantity of data storage, but a small portion of a building is much more manageable. So, even with a high definition setting, the procedure could offer a new possibility to improve the reliability of the assessment that rescuers have to do during  operations.

Dr. Ing. Stefano Marsella (CNVVF) for STORM Project

STORM: an Horizon 2020 research project on heritage and environmental changes

1

STORM (Safeguarding Cultural Heritage through Technical and Organisational Resources Management) is a EU research and development project funded in the early 2016 by the EU under the Horizon 2020 program (Call: DRS-11-2015: Disaster Resilience & Climate Change, Topic 3: Mitigating the impacts of climate change and natural hazards on Cultural Heritage sites, structures and artefacts).

STORM will study the impact of climate changes on cultural heritage and the mitigation strategies of their effects on the buildings and artefacts.

The project will be carried out by a multidisciplinary team providing all competences needed to assure the implementation of a functional and effective solution to support all the actors involved in the management and preservation of Cultural Heritage sites.An important result of STORM will be a cooperation platform for collaboratively collecting and enhancing knowledge, processes and methodologies on sustainable and effective safeguarding and management of European Cultural Heritage. The system will be capable of performing risk assessment on natural hazards taking into account environmental and anthropogenic risks, and of using Complex Events processing. Results will be tested in relevant case studies in five different countries: Italy, Greece, UK, Portugal and Turkey. The sites and consortium have been carefully selected so as to adequately represent the rich European Cultural Heritage, while associate partners that can assist with liaisons and links to other stakeholders and European sites are also included.

Starting from previous research experiences and tangible outcomes, STORM proposes a set of novel predictive models and improved non-invasive and non-destructive methods of survey and diagnosis, for effective prediction of environmental changes and for revealing threats and conditions that could damage cultural heritage sites. Moreover, STORM will determine how different vulnerable materials, structures and buildings are affected by different extreme weather events together with risks associated to climatic conditions or natural hazards, offering improved, effective adaptation and mitigation strategies, systems and technologies. An integrated system featuring novel sensors (intra fluorescent and wireless acoustic sensors), legacy systems, state of the art platforms (including LiDAR and UAVs), as well as crowdsourcing techniques will be implemented, offering applications and services over an open cloud infrastructure. An important result of STORM will be a cooperation platform for collaboratively collecting and enhancing knowledge, processes and methodologies on sustainable and effective safeguarding and management of European Cultural Heritage. The system will be capable of performing risk assessment on natural hazards taking into account environmental and anthropogenic risks, and of using Complex Events processing. Results will be tested in relevant case studies in five different countries: Italy, Greece, UK, Portugal and Turkey. The sites and consortium have been carefully selected so as to adequately represent the rich European Cultural Heritage, while associate partners that can assist with liaisons and links to other stakeholders and European sites are also included. The project will be carried out by a multidisciplinary team providing all competences needed to assure the implementation of a functional and effective solution to support all the actors involved in the management and preservation of Cultural Heritage sites (from the STORM project website).

One of the main results of the first year of the project has been the course on preparedness and first aid to Cultural Heritage “STORM 2017  Summer School“, held in Rome on 11 to 13 September 2017. The course has been conceived as a test of the 2018 edition.

Preparedness and First Aid to Cultural Heritage in the STORM Summer School

Termites, Worms, Xylophagous and Fire Protections in Museums

Marble statues (in picture the Uffizi's Laocoonte group) are among the few artifacts not subject to worms attacks in museums
Marble statues (in picture the Uffizi's Laocoonte group) are among the few artifacts not subject to worms attacks in museums

In some cases, fire protection systems can be useful also to improve the environment of museums and galleries, like the active fire protection measures that replaces the air within a protected space with inert air that has reduced oxygen concentration. The different concentrations of the components of air are slightly altered (typically, five percent of the oxygen content can be substituted by nitrogen) and are  safe to breathe for most people but prevent fire ignition in many materials.

Even if in the specific case of the Florence gallery low oxygen concentration systems weren’t used, the typical problems of improving the environment are  similar to the ones faced by the Florence Galleria degli Uffizi, that has decontaminated by termites more than 400 masterpieces. The war on insects in one of the most famous museums in the world is in full swing. Xylophagous, a presence in typical environments with wooden structures such as museums or collections, will be eradicated by a new conservation work carried out by management and the staff of the Gallery. Will be cleared also the doors of the Gallery Room of the precious miniatures.

Uffizi Gallery is currently organizing the chemical treatment of all the doors of the Gallery and restoration of wooden decorations of the Hall of Miniatures. But the works of greatest importance and size are the altarpiece The Coronation of the Virgin by Lorenzo Monaco, Coronation of the Virgin by Botticelli and the triptych with the Adoration of the Shepherds by Hugo van der Goes. Such interventions are urgent and delicate and have to be carried out without moving the artifacts and without hindrance to the public, since two of these paintings are housed in a room which is relevant to Botticelli.’

Of particular importance was the work on the altarpiece by Lorenzo Monaco was considered improcrastinabile for the state of conservation work and run into the front of the painting, which is almost five meters high, a sheet of special material, combined with the upright skylight to form a closed bag. Inside the bag was put to the nitrogen saturation of the environment, thus enabling the elimination of larvae and eggs in the wood.

The operation was conducted with constant monitoring of the parameters of moisture, temperature, pressure, concentration of nitrogen pressure, residual oxygen and ended with a treaty of protection from future attacks. The tests performed on the altarpiece in 2009 has identified a specific method and an apparatus adapted to the pest control technology of large-scale works and in 2010.

Fire Test On A Standing Georgian Dwelling Bath (UK) 1967

1Report on a Fire Test of a Ceiling in a Georgian Dwelling House on 2 March 1967, published in the Cost C17 Final Report vol 2  (pages 73-80)

RF Little, Chief Building Inspector, Bath City Council

Note that many of the technical testing methods described in this report will now have been superceded.

The test was carried out by Bath City Council under the supervision of the Chief Building Inspector of the City Engineers Department and the Senior Fire Prevention Officer of the Bath Fire Brigade. Observers form other authorities included

• Mr WH Cutmore, Ministry of Housing and Local Government

• Mr PMT Smart, Ministry of Technology & Joint Fire Research Organisation

• Mr Gibbs, Home Office, Fire Prevention Department

• Senior Building Inspectors from neighbouring authorities

• Senior Fire Prevention Officers from neighbouring authorities

At the time of the test (1967), no amendments to the English Building Regulations Part E had been made. The Regulations referred to are those current at that time.

Reason For Test

With the need to provide more units of accommodation, many large multi-storey houses previously occupied by one family were being converted into separate dwellings. In most cases, it was impossible to comply with the degree of fire resistance required by the Building Regulations, or the provision of non-combustible elements of structure. It therefore follows that applications for relaxation or dispensation of the Building Regulations were sought in the majority of cases.2

In a building of three or four storeys which was to be converted into flats or maisonettes, if alternative means of escape could be achieved at parapet or roof level, and the main means of escape was protected by walls and doors having half hour fire resistance, it was considered that the provisions of Building Reulgations E5, E9 (7), E10 and E12 were unreasonable for the following reasons

• A ceiling consisting of at least 1 inch thick plaster on laths, with square-edged flooring over joists 2 inches thick, will provide half hour fire resistance, which is a reasonable time for vacating the rooms of a building in case of fire

• The British Standard 476 Fire tests on building materials sets out conditions which are far more severe than those actually experienced in a room of a dwelling when a fire occurs

• Compliance with the Regulations would not be possible, economically or structurally, in this type of building

In order to test this theory, it was necessary to simulate the behaviour of a typical domestic fire, from the time of ignition, through the build-up period, for at least 30 minutes and then having extinguished the fire, to examine the condition of the ceiling and the floor above, and having established that the theory is correct, to use such information to support future applications for relaxation of the Building Regulations where similar conditions occur.

The house chosen was No.12 Chatham Row and was an end-of-terrace house, built about 1760 and comprising a basement, with an open area at the front, to one side and to the rear, and three additional storeys. The external walls were of 5 inch thick Bath ashlar stone. The interiors of the rooms were lined with timber panelling to a height of 3 feet above floor level and plastered above.

The wall separating the ground floor room (the one under test) and the entrance passage was constructed of lath and plaster on a timber studding.

• The floors were seven inch by one inch square edged flooring on eight inch by two inch joists

• The ceilings were constructed of one inch plaster on laths with ornate cornices

• The roof of timber trusses and rafters with slate covering

• The house on plan measured twenty seven feet by eighteen feet, while the room (the ceiling of which was under test) measured twelve feet, five inches by thirteen feet and was nine feet high

Measures Taken Prior To The Test

A visit was made to the Fire Research Station at Boreham Wood to ensure that the test would be similar to tests carried out by the Joint Fire Research Organisation (JFRO), and the preparations were made strictly in accordance with the advice given at that visit.

Firstly, the room was brought up to the standard one would expect to achieve after conversion, except for decoration, and this entailed the following work

• Reglazing the windows and replacement of sash cords to enable the windows to operate normally

• Testing the key between the ceiling plaster and the laths, and infilling cracks in the plaster

• Replacing floorboards in the room over the test room

• Re-floating a concrete hearth in the room over the test room

• Covering the partition wall between the test room and ground floor passage with quarter inch insulation board and plasterboard to ensure half hour fire resistance

• Infilling the door panels and covering the whole internal surface of the door with quarter inch insulation board to give half hour fire resistance and increasing the door stops to a thickness of one inch

In addition, it was necessary to provide a suitable fire load, and the JFRO indicated that it was desirable to have a fire load of five to six pounds per square foot of floor area. Better results would be obtained if this was provided by cribs of rough cut timber rather than by articles of furniture.

Four cribs were prepared. Each crib weighed 216.67lbs. which gave a fire load of 5.67 lbs. per sq. ft. of floor area. In addition to this imposed fire load, each wall had the original panelling to a height of 3 inches above the floor level.

The floor covering was removed from the floor of the room over the test room with the exception of a narrow strip of standard hard board covering a crack between two floor boards. It was essential that the temperatures during the test were accurately recorded and accordingly five thermocouples were installed in the ceiling of the test room to record the temperatures at a position 3 inches below the ceiling at intervals over the area of the ceiling.

Arrangements on the Day of the Test

Recording instruments, to which the thermocouples were connected, were installed in the first floor rear room. The floor of the test room was covered all over with 1” of damp sand and at the points where the cribs were to stand, sheets of insulation board were placed on the sand. These measures were to ensure that the fire would not burn downwards and affect the floor structure. Four cribs were set up in the test room in the positions shown on the plan.

The ignition pyre was built at a central point between the four cribs and trails led away to the cribs. The pyre and trails were of wood shavings, wood chips and sawdust and was 1’ 6” high and the trails 6” high. Immediately prior

to the ignition of the pyre three pints of paraffin were poured on the pyre to simulate similar conditions to that of an overturned oil heater. The Fire Brigade Officer assumed responsibility for fire control during the test and also provided observers to record conditions during the test.

Recording Equipment

The test required that the temperature at five points, 3 inches below the ceiling, of the test room, should be measured at short intervals from the time of ignition of the fuel, affording the fire load, in that room. Thermocouples were used and the wire selected was nickel-chromium/nickel aluminium T1/T2.

Duration Of Test

In order to simulate as near as possible the conditions and development of a normal fire in a dwelling, it was decided to allow the fire to burn 45 minutes from the time of ignition. The reasons for this period being chosen are as follows

• In a normal domestic fire with oxygen supply limited to that found in a room with doors and windows closed, severe smoke logging occurs at an early stage and the fire could be self-extinguished through lack of oxygen. Under these conditions the ceiling of the test room would not be given a satisfactory test as maximum temperatures would not be reached. Therefore, a flow of air to the fire had to be guaranteed in order to ensure it would continue to burn. Accordingly, a 2 ½” gap was left above the top sash window from the beginning of the experiment and at zero + 3 minutes a gap of 3” was opened at the bottom of the lower sash window. This was at zero + 9 minutes, increased to 6”. During the whole of the experiment the normal flue from the grate of the room was providing a cross draught.

• As the structure of the ceiling was to be tested for a period of at least 30 minutes under normal conditions appertaining at a domestic fire, and at the end of the first 15 minutes approximately, of such a fire, it is usual for a ‘fall off ’ of temperature to occur until the fire is ventilated in some way, e.g. breaking of glass in a window, it was decided that the 30 minute period of test for the ceiling should take place after that initial 15 minutes period has passed. This meant that from the time of ignition of the pyre, to the time of completion of the experiment, a 45 minute period was indicated.

• Although, in some circumstances it would have been desirable to allow the fire to burn until the ceiling under test had collapsed, in this instance it was necessary to submit the ceiling to the heat from a normal domestic fire for a period of at least 30 minutes and then, if the ceiling still remained intact, to extinguish the fire and carry out a close examination of the fire damage done to the materials forming the construction of the ceiling and the floor above.

• The door and the partition wall, between the Test Room and the passageway from the staircase to open air, had been modified to conform with normal half hour fire resisting standards. A 30 minute fire test was, therefore, demanded and again the extra 15 minutes initial burning period, appeared to be indicated in order that the performance of the door and partition could be measured against that of the ceiling.

Weather Conditions

The day was dry with cloudy and bright periods. There was a slightly westerly wind. The front window of the room under test, faced west.

Summary Of Test

Zero: At 1205 hours the incendiary materials forming the ignition pyre and comprising wood chips, wood shavings and sawdust over which 3 pints of paraffin had been poured were ignited. When reference is made to this time in the following report it will be as ‘zero’.

Zero + 2½: Within the first 2½ minutes the pyres and trails were burning well, with some build up of heat and then smoke became quite dense as oxygen in the air within the room was rapidly reduced.

Zero + 5: At zero plus 5 minutes some temperature reduction showed on the thermocouple readings and a very slight percolation of smoke occurred at the top of the half hour fire resisting door, into the passage. The window at this point of the room was opened 3” at the bottom in addition to the 2½” at the top, in order to encourage air circulation. The cribs were now alight at the bottom. Quite heavy smoke logging of the room was apparent but the cribs were still visible.

Zero + 7½: In the next 1/2 minutes (zero 5 – 7½) the top pane of the front window cracked in two places and all cribs were alight at the inner corners with smoke issuing from the tops. Temperatures started to take an upward curve.

Zero + 10: Temperatures continued to rise and a slight increase of smoke penetration was noticed around the top of the half hour fire-resisting door. The front window was opened another 3” at the bottom ( 6” in all) and flames were noted coming from the tops of the cribs at all inner corners. Vision across the room improved.

Zero +12½: Continued rise in temperature. First signs of smoke on first floor – very slight percolation between the fireplace and the door, at base of wall. Cribs now burning well on inner surfaces. Side window glazing very hot.

Zero + 15: Temperatures still rising. Highest recorded at No. 3 thermocouple 3270 C. Smoke percolation at 1/2 hour fire resisting door very slight. Small increase in temperature of door panels. Lower pane of front window cracked. Cribs burning well with flames 2’ 6” high from inner surfaces. Good vision most of room but ceiling obscured by smoke.

Zero + 17½: One thermocouple showed slight decrease in temperature recorded (No. 5) others a slight increase.The Yale lock on the half hour fire resisting door, hot but bearable to touch. Slight percolation of smoke around the door jamb. Molten paint dripping from framework of front window and top pane cracked in the side window.

Zero + 20: Slight decrease in temperature readings of thermocouples 1 and 3. Increases on all others.Yale lock too hot to touch. Smoke becoming dense inside room and flames less visible, but cribs showing increased burning.

Zero + 22½: Increase all round in temperature recordings of thermocouples. Increase in smoke percolation around door stops and door jambs. Cribs well alight nearest door. Increased number of cracks in front top window. Severe discolouration of side window by smoke.

Zero + 25: Temperature reading of centre thermocouple (No. 3) same as zero + 22½ . Slight decrease in reading from

No. 5. All others slightly up. First signs of smoke through cracks between floorboards at a point immediately above the partition wall between the test room and the passage. Slight smoke also showing in corner of room at side of the door. Again over the passageway. No apparent increase in temperature of the half hour fire-resisting door frame but slight increase evident on panels. Fire in cribs sluggish. Sash cords to lower half of front window burnt through and window dropped. Glass only slightly broken away and a reduction of visible flame with a corresponding increase of smoke evident.

Zero + 27½: Considerable drop in temperature readings of thermocouples 1, 2, 3, & 4. Slight drop in case of No. 5. Smoke now coming through crack at end of another floorboard over the ground floor passage and some percolation of smoke into the Recording Room, first floor, rear. No smoke coming from around the door stops and jambs. Pegs removed from below top section of front window to simulate sash cords burning through. Window dropped and glass dislodged where cracks had already been apparent. Smoke seen to be issuing from cracks in walls and lintel over the side window.

Zero + 30: Sudden rise in temperature recording of all thermocouples other than No. 5. Smoke now increased from the base of both door jambs near landing at first floor level and also issuing in centre of room near the thermocouple (No. 3). Very slight smoke percolation around the half hour fire-resisting door. Flames in the room high and licking the ceiling. Slight flaking from ceiling, possibly distemper or similar decorative material. Bottom pane of glass in side window cracked.

Zero + 32½: Steady increase in temperature recordings of No. 1-4 thermocouples. Slight decrease in temperature recorded at No. 5. Smoke convected from window of room on fire below, through the unglazed first floor window. Signs of smoke from the top of the wooden wainscoting near front window. Paint softening on the top rail of the half hour fire-resisting door and smoke issuing under pressure from the Yale lock. Smoke also apparent from between the top of the door and the door stops. Cribs well alight and tops of window frames and frame around window opening burning.

Zero + 35: General rise in temperature recordings. In the case of No. 2, 3, 4, 5 from 800 C – 1050 C, and No. 1 a very slight increase of 60 C. At first floor front room level considerable smoke percolation was apparent from around the sill of the front window. Smoke also percolating between the skirtings and the floorboards all along the wall between the front room and the centre of the room. The paint on the panels of the half hour fire-resisting door started to blister. The top pane of glass in the side window blown outwards by excessive pressures in the test room.

Zero + 37½: Rapid rise in temperature recorded. In the case of thermocouple No. 5 – 2260. Following a crash of glass breaking (side window – see Zero + 35) the smoke and heat entering by the first floor front window became less. Some smoke started to come up the staircase. A greater quantity of smoke apparent through the Yale lock on the half hour fire-resisting door and smoke around the door increased.

Zero + 40: Continued rapid rise in temperature recordings. 3200C in the case of thermocouple No. 1. Smoke percolation continued at first floor front room level and fire observed for the first time at the side of the front window. Heat through the unglazed windows, rising from the room below became intense. A slight increase of smoke noticeable from the upper area of the door around the stops. Fire in ground floor room at peak with plenty of ventilation by way of the two windows which were now without glazing. Slight flaking of ceiling is still all that is apparent. No breaking down of separation.

Zero + 42½ : Highest temperature reached No. 3 thermocouple, 10000 C. All others, 8950 C. or above. Fire still at its peak. Half hour fire door shows slight burning at the top. Upper panels still comparatively cool. The ceiling of the room was intensely white and appeared to be glowing. No signs of failure.

Zero + 45: Temperature still between 8430 C and 9870 C. The latter being the measurement at No. 3, thermocouple. Most smoke percolation at the first floor front room was between the chimney breast and the door. Smoke percolation also quite heavy around the base of the wainscoting panelling on the wall between No. 12 and No. 11 Chatham Row. Inspection afterwards showed that this smoke had entered the hollow partition wall around the door at ground floor level and had then risen into the void between the ceiling and floor above which was situated over the passage. The room was now becoming smoke logged. The half hour fire-resisting door was starting to warp at the top allowing smoke to pass more freely. The whole of the ceiling still apparently sound. None of the stopped in cracks had broken down. Cornices still in position. Fire still extremely hot but showing signs of being past its peak.

Zero + 45½: Temperature reading No. 1 thermocouple -7650 C, a fall of 1750 C. Ceiling still apparently sound.

Extinguishing

Zero + 46: Extinguishing of the fire commenced using 1” hose reel jet. This was augmented by 1/2 “ jet. Steam produced, caused rapid cooling of the surface of the ceiling, and the first cracks appeared. These seemed to be in positions where original cracks had been repaired. Approximately 8 sq. ft. of ceiling then fell away and access of air to the ceiling void and exposed laths resulted in some of the laths, already conditioned by conducted heat, catching on fire. Extinguishment was carried out without undue disturbance of tested material, but water hitting the door surface caused the asbestos fibre board surface to split and curl. This same effect was produced where water hit panels of asbestos fibreboard which had been fitted over recesses which were suspected of not being up to half hour fire-resisting standards. The plasterboard covering the partition wall was damaged considerably during extinguishing because fire had entered the hollow partition and water had to be directed through into the hollows at various points causing spalling of the plasterboard and plaster of the partition itself.

Observations during the test.

The ceiling under test registered the passage of flame for the whole of the test period of 45 minutes. There was no sign of cracking, distortion or material breakdown during the whole of the test other than a brief period, in the early stages, when some initial flaking occurred on some parts of the surface of the ceiling eg distemper. The fire had reached its peak at zero + 42½ and then the temperature curve had started to descend. At the peak period it was noted that the fuel cribs in the test room were almost exhausted having burned down to within 6” of the floor. It is, therefore, reasonable to assume that a continual drop in recorded temperature could have been expected had the fire been allowed to burn after zero + 46. The treatment of the inner surface of the door and partition, between the ground floor passage and the Test room, to afford half hour fire-resistance was completely successful in spite of the fact that the plasterboard additional covering had not been skimmed with plaster to seal the joints. The penetration of the fire which did occur into the hollows of the laths and plaster partition over the door, was not through the protected surface but by way of the architrave over and to the side of the door opening. The fire thus by-passed the protection. Even so this must have occurred at the very late stages of the test as no flame was noticed on the floor above until extinguishing the fire in the test room well under way. It was then necessary to remove some of the lath and plaster surface of the partition in order to extinguish the hot spot.

At no time during the whole of the test was the escape route from upper floors so affected by smoke or heat that it could not be used. The separation afforded by the half hour fire-resisting partition wall and door was adequate for the whole 45 minute period of the test. Although some smoke percolation occurred past the ends of floorboards in the front room at first floor level, no flame penetrated at any time through that area of the floor over the test room. Considerable pressures were applied by hot gases both to the ceiling and the walls. This was most evident at zero + 32½ when smoke issued in the form of a horizontal jet from the Yale lock on the door, and at zero + 40 when the glass of the upper sash window at the side of the test room blew out with considerable force. The fire followed the usual pattern which can be expected when a fire occurs in a room in domestic property in which there is a normal fire load, the fire has some ventilation and is not disturbed for some period by opening doors or breaking windows. In the case of this test there was an early rise in temperature, brought about by the paraffin soaked pyre burning fiercely and then as the cribs became involved and oxygen in the atmosphere of the room became rare, a sluggish period followed. This occurred during the first ten minutes after which, by increasing the flow of air over the window sill of the front window, more rapid combustion took place. A gradual rise in temperature for a further 15 minutes when again some smoke logging developed and temperatures dropped. This was at the time that sash cords burnt through, which were holding up the bottom section of the front window. When the top window section was dropped the new supply of air stimulated the fire and a general very rapid rise in temperature resulted culminating in the peak of 10000C. being reached at zero + 41½. Fuel was at this time becoming exhausted and in the next 2 minutes a decline in temperature commenced. The heat of the test fire was sufficient to cause almost all of the 11/4” plaster skimming on the inside of the front wall of the room to leave the stonework.

Observations after the Test

The ceiling under test withstood the application of heat from a normal fire load underneath for the whole of the 45 minute test period without any visible signs of deterioration. No cracks were apparent, and after the initial flaking of surface decorative materials no further spalling or flaking was noted. The plaster cornice around the room also remained intact, other than in one short section immediately above the front window where it cracked and dropped slightly.

When water was applied to the fire in the remains of the cribs, the steam created caused, after approximately halfminute, sudden contraction of the ceiling and cracks opened up at points where previously cracks had been undercut and sealed with plaster during the preparation period. A few moments later approximately 8 sq. ft. of ceiling plaster fell to the floor. It was noticed that although some of the laths had carbonised due to heat conducted through the plaster they were not on fire, but as soon as they were exposed small flames appeared on the carbonised surfaces. These had to be extinguished to prevent further damage and during the extinguishing, further collapses of ceiling plaster took place.

With greater exposure of the underside of the floor and the joists it was most apparent that the floorboards were undamaged and the lower edge of only some of the joists, although charred in places, the charring was not of sufficient depth to measure with any accuracy. A considerable portion of the laths still remained undamaged.

A composition gas pipe passing through the void between the floor and the ceiling was undamaged. In addition, an accumulation of small twigs and fibrous material, possibly collected by mice and in itself readily combustible, found in a void between floor joists, resting immediately on top of the laths supporting the plaster ceiling, was not damaged in any way by fire or heat. The plaster decorative cornice around the room was intact after the fire on three sides of the room. In the case of the fourth side, it was only the section immediately above the front window that some signs of damage occurred. At this point the cornice cracked vertically and a section approximately 18” long dropped slightly but did not become dislodged.

Although during the whole of the 45 minutes covered by the test, some smoke did percolate into the passage and also into the first floor room above the test room, at no time was the movement of people prevented along the passage, up the staircase or around the rooms.

The fire, during the period of the test, did not penetrate the ceiling and floor structure to the room above. At zero + 58, after extinguishing had commenced, a small flame was noticed at a crack between floorboards which had been covered with a strip of standard hardboard. The hardboard was burning and flame started to travel rapidly over its surface. When the source of the flame was investigated it was found that the fire from the test room had penetrated the architrave of the door at a point over the top of the half hour fire-resisting door, and had then by-passed the ceiling of the test room by travelling up the hollow of the partition wall. This was also the route by which most smoke percolation occurred into the first floor room.

The partition and door which were converted to half hour fire-resisting standards stood up to the test remarkably well. Some percolation of smoke and heat by-passed the test ceiling by way of the hollow partition. This, however, would possibly not have occurred, had the partition been skimmed with plaster and cracks filled in accordance with normal procedure.

The door reacted extremely well. It was only at zero + 45 that the door began to warp and allow smoke to escape in increasing volume. When the remains of the asbestos fibreboard cladding was removed from the inner face of the door including the panel infills, some of the original green paint was still intact under the infills.

Conclusions

The fire resistance of a normal ceiling in a middle class Georgian house is such that it is capable of preventing fire from spreading to the floor above for at least a 30 minute period. It is normal for vertical separation between rooms and exit routes to afford half hour fire-resistance. To be consistent, therefore, a ceiling between such rooms and rooms above should also be half hour fire-resisting and a fire resistance of one hour plus, as required in some circumstances by the building Regulations 1965, between floors, would appear to be excessive. It would appear that the tests applied under furnace conditions to ceiling and partitions, to assess fire resistance, is too stringent and does not simulate conditions as they really occur in a fire in a building. Under the circumstances it would appear that the fire resistance of a sound Georgian ceiling does not require to be upgraded to one hour. Such an upgrading could result in the fire below the ceiling breaking out horizontally into the exit route and preventing escape by that route, before any warning of a fire is transmitted to persons living above.

Acknowledgements

Mr. A. E. Loveridge (then Chief Building Inspector, City of Bath)

The Chief Fire Officer, Bath Fire Brigade.

The Principal, Bath Technical College.

Flame retardant Textile Materials Limiting Fire Hazards in Historic Buildings

IMG_7337One of the arguments addressed during the Cost C17 Action “Fire Loss to Built Heritage” has been the role of materials in fire safety of historic buildings. In the Cost C17 proceedings of the Final Conference (Rome, November 2006), the   Session 5.4 Flame – retardant Textile Materials Limiting Fire Hazards in Historic Buildings, presented by Jolanta Muskalska, indicated that her Institute had carried out a project on fireproofing textiles in support of COST Action C 17. The aims of the project were to:

• Assess the extent of fire hazards in historical objects resulting from the use of flammable textiles;

• determine fire safety requirements for textile equipped interiors in historical objects and other situations such as hotels, restaurants and administrative rooms;

• determine guidelines and technical features required for flame – retardant textiles;

• devise and pilot the production of representative textiles for historical objects to meet assumed requirements;

• develop systems to furnishing historic objects with textiles possessing features that satisfy the fire safety requirements and are reconstructed with respect to colour, design, weave and utilitarian properties

Ms Muskalska referred to a number of palaces in Poland where the results of this work were beneficial and described the flame test work to analyse the burning behaviour and parameters of a variety of textiles. The new fabrics were predominantly flame resistant polyester, with one example of flame resistant cotton having been produced. She concluded that:

• All designed and produced fabrics meet the fire safety requirements and can be used in model historic objects.

• All designed fabrics meet requirements of the range of performance properties (i.e. colour fastness to artificial light, domestic and commercial laundering and dry cleaning) [and safety of use (i.e. emission of volatile organic compounds, content of extractable heavy metals, presence of arylamines that are not allowed to be split off from colorants under reductive conditions and pentachlorphenol) the results of which were not offered in the presentation].

• Currently, fabrics were being installed in the Cinematography Museum.

• During renovation of historical objects it is important to replace furnishings such as net curtains, drapery, carpets etc. made from flammable textile raw materials with flame-retardant fabrics having all the necessary performance and aesthetic features.

Cost C17 Final Report Brochure

1An emerging proposal to initiate an integrated approach to the established problems was offered to the 2nd COST Urban Civil Engineering Conference: The future of the city; New Quality for Life event in Bled, Slovenia in 2001 and
accepted. Follow-up activities resulted in the final Memorandum of Understanding (MoU) being formally agreed by the COST Office in Brussels. This document promoted the implementation of a European concerted research approach, ultimately designated as “COST Action C17 Built Heritage: Fire Loss to Historic Buildings”, which was formally inaugurated in Brussels in December 2002.
The agreed MoU identified four work-packages:
• Working Group 1: Data, loss statistics and evaluating risks.
• Working Group 2: Available and developing technology.
• Working Group 3: Cultural and financial value.
• Working Group 4: Property management strategies.
COST C17 had as its central objective the definition, at a European level, of the degree of loss to built heritage through the effects of fire, and the promotion of remedial actions and recommendations to combat these using minimal invasive techniques. The Action also aimed to address a general lack of statistical information, and a common lack of understanding and appreciation of what measures are available and required.

It sought to provide good practice guidance on how to sensitively retrofit modern day fire protection equipment into historic fabric, and to develop related management expertise in dealing with this problem in historic premises.
The operational framework of the Action was developed to consider the special nature of the value of historic buildings, the economic aspects of cultural historic value, and the need for measures to minimise damage if a fire occurs. Specifically this required consideration of the:
• vulnerability of historic buildings to fire
• risk assessment methodologies
• protection of fabric and content
• prevention of fire and fire spread
• detection and suppression requirements
• training and management of staff
• insurance considerations
In pursuing these intentions, there was a need to integrate and coordinate the associated factors so that a common understanding of the issues might emerge. To achieve meaningful results during the intended life-span of the programme, a strategic approach was adopted. This focused on:
• compiling statistical data on the extent of heritage at risk.
• promoting statistical research into the consequences and causes of fires – both major fires and more minor incidents (such as small fires to which the fire brigade are not called or false alarms) and their impact. Using risk assessment data gathered as a basis for discussion, a dialogue began to be established with insurance bodies to seek the development of insurance products more closely tailored to historic buildings.
• establishing a well-documented survey of up-to-date technical expertise to assist in influencing future developments in fire protection technology for use in historic buildings.
• defining an appropriate range of passive and active technical equipment countermeasures.
• considering alternative approaches to assist in stemming current loss levels.
• organising a series of conferences and/or workshops to develop thinking for effective risk assessment techniques and risk mapping using insurance company and other data.
• promoting findings and benefits of relevant risk assessment methodologies and property management support.
• effecting know-how dissemination through publishing proceedings and recommendations.

The Final Report brochure of the Cost Action C17 may be downloaded from this post: COST Final Report Brochure

Are Wireless Sensors Suitable to Heritage Buildings?

1Wireless sensors can be used with fair advantages in historical buildings. They do not need the works that normally have to be carried out with traditional appliances.

In order to understand if this kind of sensor fits with the performances of reliability and effectiveness, Prof Mecocci (Siena University) and Mr Barneschi (Italian National Fire Corps) have studied the problem in order to gather data to develop specific guidelines and installation procedures capable of granting the proper performance and security level.

One of the sub-goals of the study was to gather real data from real operative condition to guide us toward the above main objective.

mecocci-barneschi

Fire Effects on Archaic Materials, Cultural Resources and Archeology

P1040996As specialists know, one of the main problems in applying fire safety engineering to cultural heritage is the lack of data about the behavior of artifacts and materials used in historic buildings to fire. Such problem concerns also the effect of extinguishing agents to the same materials.

U.S Department of the Interior – Bureau of Land Department, has published on its website (http://www.blm.gov) a page dedicated to the behavior of historic materials to fire. The study (Bare Bones Guide to Fire Effects on Cultural Resources For Cultural Resource Specialists), by Ms Kate Winthrop, synthesizes some of the technical information available on the effects of fire on cultural resources. In particular, much of the data published  is from drafts of articles for a publication to be released under the USFS Rocky Mountain Research Station “Rainbow” series.

The main issue of the page are:

  • Fire Effects on Lithics
  • Fire Effects on Ceramics
  • Fire Effects on Organic Materials
  • Fire Effects on Historic Materials
  • Fire Effects on Inorganic Architectural Materials
  • Fire Effects on Rock Art
  • Effects of Fire Suppression on Cultural Resources
  • Effects of Fire on Archaeological Sites
  • Protection Protocols

Fire Risk and Restoration works: 6 years of Fire Data in Venice

1The problem of restoration-rehabilitation sites fires and their consequent severe damages to the historic-artistic heritage seems to not receive the due attention yet. There is probably a lack of adequate information, which would allow such heavy risk emerge and enable to establish the necessary landmark upon which the consequent initiatives could be organized.

The contribution of Mr Stefano Zanut (Italian Firefighters Corps), which is a part of a research carried out by Venice University Institute of Architecture (I.U.A.V. – Istituto Universitario di Arhitettura di Venezia), aims to begin filling up that gap through the data analysis provided by the Firefighters Corps operating in Venice, where, because of building fabric typology existing there, every of its building sites can be identified as “restoration site” of an heritage building.

The paper has been presented during the international meeting Cultural Heritage and Fire Protection Issue –  Siena, 23rd May, 2008: zanut_110_118

Did Rome’s Colosseum suffered a post earthquake fire in 271 A.D.?

ColosseumIn 217 A.D. Rome’s Colosseum was slightly damaged by a fire. Since Rome is built in a seismic area and there is an earthquake reported during September 217 A.D. ,Rome Univerity  La Sapienza’s Professor Enzo Cartapati has studied the possibility of a fire event due to the seismic event.

Together with Maurizio Cerone, Prof. Cartapati has conducted a structural analysis of Colosseum’s stone columns, in order to understand if actually the fire occurred after the seismic shock.

The presentation of such work, presented during the April 11th 2003 Conference “Integrating Historic Preservation with Security, Fire Protection, Life safety and Building Management Systems”,  is downloadble from this website:

Cartapati-Cerone_Colosseum

Scottish Historic Buildings national Fire database – Risk evaluation

Istantanea 2009-11-30 18-02-47

In an attempt to try to evaluate and reduce the different level of risk in heritage building, in Scotland, a unique approach under the project title of the Scottish Historic Buildings National Fire Database (SHBNFD) was developed. This provided a different kind of insight and approach to historic buildings at risk. The SHBNFD project is an ongoing partnership between Historic Scotland and the eight Scottish Fire and Rescue Services. Initially covering the 3,500 Category A Listed Buildings across the country, the project’s overall aims are: • to improve the effectiveness of fire-fighting operations in historic buildings by making available relevantinformation in a format suitable for use by fire crews attending an incident at these properties • to facilitate the improved reporting and gathering of statistics on fires in Scottish historic buildings • to inform Historic Scotland’s Technical Conservation, Research and Education Group’s future researchprogramme from the feedback material The database has been developed as a ‘living document’. It provides an exchange of information between Historic Scotland (who hold reference details on listed buildings), the National Monuments Record of Scotland (NMRS) –located with the Royal Commission on the Ancient and Historical Monuments of Scotland (who hold a survey, drawing and photographic archive of sites and buildings) – and the eight Scottish Fire and Rescue Services (who hold fire inspection information on buildings). Combining all of this material for each of the listed sites provides a unique insight into the location, quality and relevance for fire fighting crews.

Istantanea 2009-11-30 18-03-20Istantanea 2009-11-30 18-03-44Istantanea 2009-11-30 18-04-21

The output from the database is an amalgam of historic information from the NMRS and other archives. This material is initially gathered by a historic buildings researcher, and then verified and expanded on by any material gathered on site by a seconded fire officer from each of the eight Scottish Fire and Rescue Services, following a related series of site visits. The initial phase of the project aims to incorporate each of the c3,500 Scottish Category A listed properties in the database. The type of collated information includes architectural descriptions, photographs, plans, access routes and details of water supplies. In addition, priority areas within a property that are of highest historic significance are identified, as are ways in which a building’s structure may adversely affect fire-fighting operations. The following illustrations are copy “screen shots” of the type of data resulting from the amalgamation of information:-

Istantanea 2009-11-30 18-05-28

Istantanea 2009-11-30 18-05-44Istantanea 2009-11-30 18-06-07Istantanea 2009-11-30 18-06-26Istantanea 2009-11-30 18-06-47Istantanea 2009-11-30 18-07-02Istantanea 2009-11-30 18-07-26

An immediate benefit of the database is the improved awareness of the location, significance and importance of historic buildings within the Scottish Fire and Rescue Service areas. The longer-term benefit of the project will be in helping to mitigate the devastating effects that fire can and does have on Scotland’s built heritage. Today, the majority of the country’s Category A listed buildings had been included across the eight Fire andRescue Service rural areas and in the smaller towns. Agreement was also reached on how to extend the exercise to include the high proportion of Category A listed buildings that exist within the cities of Glasgow and Edinburgh. The Scottish Historic Buildings National Fire Database has been well received as a valuable example of collaboration between cultural heritage professionals and the fire and rescue authorities. Used together with relevant statistics on actual fires, the database is considered to present a very effective means of increasing future fire safety in historic buildings. As a result, its recognised value, potential for a much wider application, and clear operational benefits for fire-fighters has been acknowledged. It was also considered that the project approach could be adopted by other countries where similar, or related, datasets of information exist and could have the potential to be integrated. From COST C17 final report – Author :  Mike Coull

Built Heritage: Fire Loss to Historic Buildings – Associated Publications

costCOST Action C17 “Built Heritage: Fire Loss to Historic Buildings” has contributed to gather a wide variety of publications about fire safety and fire risk assessment of historic buildings. In the downloadble document  Part4_Pages_267-280 (which is one of the parts of the final proceedings of the Action) it is possible to find some of the Cost C17 proceedings Associated Publications.

Water mist for Protection of Heritage – Cost C17 Final report

Water mist for fire protection is a relatively new technology with specific advantages to the built heritage. Many fixed installations have been commissioned throughout Europe and many research activities are on-going or beingconsidered.

The standard design and manufacturing processes do not currently address heritage applications, but performance-based codes are favourable for introducing new water mist systems. This report establishes the current level of experience, and presents basic information about water mist for the heritage community. The challenges, implications and perspectives of the technology are outlined in order to ensure the best protection of European heritage. A guide on how to accept or approve mist systems in heritage properties is given.

Water mist application is the most subtle method of water extinguishing of fires. It provides a safe and practical environment for rescue work, it protects visitors and staff, and it incurs minimal secondary damage in valid or unintentional activations and substantially removes harmful particles from smoke.

Istantanea 2009-11-06 19-35-05

Continue reading “Water mist for Protection of Heritage – Cost C17 Final report”